Learning Curve Consideration in Makespan Computation Using Artificial Neural Network Approach

Authors

  • A. Arunagiri Department of Electrical and Electronics Engineering Technology, Yanbu Industrial College, Yanbu Al Sinaiyah, Kingdom of Saudi Arabia
  • Suresh Kumar Department of Electrical and Electronics Engineering Technology, Yanbu Industrial College, Yanbu Al Sinaiyah, Kingdom of Saudi Arabia
Abstract:

This paper presents an alternative method using artificial neural network (ANN) to develop a scheduling scheme which is used to determine the makespan or cycle time of a group of jobs going through a series of stages or workstations. The common conventional method uses mathematical programming techniques and presented in Gantt charts forms. The contribution of this paper is in three fold. Firstly, the learning curve which is characterized by a coefficient is considered in the computation work. Secondly, this work is limited to small number of jobs and is useful for project based pilot runs which involve learning. Lastly, the scheduling scheme is developed in ANN as an alternate method. Extensive and successful training using the input and output vector pairs were done to establish the proposed method. Comparison was done for the tested outputs and results produced seem reliable.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Artificial Neural Network based Curve

We use artificial neural networks to perform curve prediction. For that, we have created a class of neural networks (feed forward multilayer perceptron networks with backpropagation) that have a topology which is determined by their genetic makeup. Using a simple evolutionary strategy on their genes, we optimise the networks’ topologies to solve the problems at hand. Using this approach, we cou...

full text

Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...

full text

Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique

Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...

full text

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

full text

Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach

Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 3

pages  183- 192

publication date 2010-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023